
SUMMABILITY AND THE CLOSED GRAPH THEOREM
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Abstract. This note provides a short illustration of the Silverman-Toeplitz theorem from
a functional analytic point of view.

1. Introduction

According to [2, p. 148], an infinite-dimensional complex matrix T = (tmn)∞m,n=1 is said to
be regular if it satisfies the following conditions:

(i) There exists a constant C = C(T ) > 0 such that
∞∑
n=1

|tmn| ≤ C for all m ≥ 1;

(ii) For every n ≥ 1, we have lim
m→∞

tmn = 0;

(iii) For every n ≥ 1, we have lim
m→∞

∞∑
n=1

tmn = 1.

It is shown [2, Theorem 5.5] that regular matrices preserve limits. More precisely, if T = (tmn)
is regular and an → a ∈ C as n→∞, then

bm =
∞∑
n=1

tmnan (1.1)

is well-defined for each m ≥ 1 and bm → a as m→∞. The converse is also true [2, Exercise
5.2.1.3, p. 157]; that is, if T preserves limits in the sense that given any sequence {an}∞n=1 ⊆ C
converging to a ∈ C, the sequence {bm}∞m=1 given by (1.1) is well-defined for each m ≥ 1
and bm → a as m→∞, then T must be regular. This result together with [2, Theorem 5.5]
is now known as the Silverman-Toeplitz theorem. It is clear that if T preserves limits, then
it satisfies the conditions (ii) and (iii). Now we show, using tools from functional analysis,
that if T preserves limits, then it also satisfies (i).

2. Normed Vector Spaces and Linear Operators

Let F = R or C. Let X be an F-vector space. A norm on X is a function ‖ · ‖ : X → R≥0
satisfying the following properties:

(a) Positive-definiteness: for any x ∈ X, ‖x‖ ≥ 0 with equality if and only if x = 0;

(b) Absolute homogeneity: for any x ∈ X and c ∈ F, we have ‖cx‖ = |c|‖x‖;
(c) Triangle inequality: for any x, y ∈ X, we have ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

A normed vector space (X, ‖ · ‖) is simply a vector space X equipped with a norm ‖ · ‖.
The norm ‖ · ‖ induces a topology T on X. We say that (X, ‖ · ‖) is a Banach space if X is

1



2 STEVE FAN

complete with respect to T . The finite-dimensional complex vector space (Cn, ‖·‖2) provides
the simplest example of a complex Banach space, where

‖x‖2 :=

(
n∑

i=1

|xi|2
)1/2

for all x ∈ Cn.
Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed vector spaces with induced topology TX and TY ,

respectively. A linear operator T : X → Y is an F-linear map from X to Y . The set of all
linear operators from X to Y is denoted by L(X, Y ), and we shall write L(X) := L(X,X)
for simplicity. We say that T is continuous if T : (X, TX)→ (Y, TY ) is a continuous function.
For a given linear operator T : X → Y , we define the norm of T by

‖T‖ := sup
x∈X\{0}

‖T (x)‖Y
‖x‖X

.

It is clear that

‖T‖ = sup
x∈X
‖x‖X≤1

‖T (x)‖Y = sup
x∈X
‖x‖X=1

‖T (x)‖Y .

We say that T is bounded if ‖T‖ <∞. The set of all bounded linear operators from X to Y
is denoted by B(X, Y ), and similarly we shall write B(X) := B(X,X). It can be shown [1,
Proposition 2.1, Chapter III] that T is bounded if and only if T is continuous. One of the
most important results concerning bounded linear operators is the following known as the
closed graph theorem [1, Theorem 12.6, Chapter III].

Theorem 2.1 (The Closed Graph Theorem). Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Banach spaces.
A linear operator T : X → Y is bounded if and only if the graph of T ,

Gr(T ) := {(x, T (x)) ∈ X × Y : x ∈ X},

is closed in X × Y .

Equivalently, a linear operator T : X → Y between Banach spaces X and Y is bounded
if and only if for any sequence {xn}∞n=1 ⊆ X such that xn → x ∈ X and T (xn)→ y ∈ Y as
n→∞, one has y = T (x). We shall use this equivalent formulation of Theorem 2.1 to show
that a matrix that preserves limits must satisfy (i).

3. `∞ and Its Subspaces

It is well known that the space (`∞, ‖ · ‖∞) is a Banach space, where

‖x‖∞ := sup
n≥1
|xn|

for any infinite sequence x = (xn)∞n=1 ⊆ C and

`∞ := {(xn)∞n=1 ⊆ C : ‖x‖∞ <∞} .

Consider the subspace (`∞c , ‖ · ‖∞), where `∞c consists of all the convergent sequences in `∞.
It is not hard to see that `∞c is closed in `∞ and hence a Banach space. Indeed, suppose
that {xk}∞k=1 ⊆ `∞c converges to x ∈ `∞. Let ε > 0 be arbitrary. Then there exists K ≥ 1
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such that |xKn − xn| < ε/3 for all n ≥ 1. Since xK ∈ `∞c , there exists N ≥ 1 such that
|xKm − xKn | < ε/3 for all m,n ≥ N . It follows that

|xm − xn| ≤ |xm − xKm|+ |xKm − xKn |+ |xKn − xn| < ε

for all m,n ≥ N . Thus {xn}∞n=1 is convergent, which implies that x ∈ `∞c . This proves that
`∞c is closed in `∞. In fact, if xkn → ak and xn → a as n → ∞, then we see that ak → a as
k →∞ by considering the inequality

|ak − a| ≤ |ak − xkn|+ |xkn − xn|+ |xn − a|.
Consider an arbitrary linear operator T : `∞c → `∞c on (`∞c , ‖ · ‖∞) with matrix represen-

tation T = (tmn).1 Note that

‖T‖ = sup
x∈`∞
‖x‖∞≤1

‖Tx‖∞ = sup
x∈`∞
‖x‖∞≤1

‖(bm(x))∞m=1‖∞ = sup
x∈`∞
‖x‖∞≤1

sup
m≥1
|bm(x)|,

where

bm(x) :=
∞∑
n=1

tmnxn.

Clearly, we have ‖T‖ ≤ C(T ), where

C(T ) := sup
m≥1

∞∑
n=1

|tmn| ∈ [0,+∞].

On the other hand, suppose that m ≥ 1 and N ≥ 1 are positive integers. Define (xn)∞n=1 by
xn = sgn(tmn) if n ≤ N and xn = 0 otherwise, where sgn(z) = 0 if z = 0 and sgn(z) = |z|/z
if z 6= 0. Then xn → 0 as n→∞ and ‖(xn)∞n=1‖∞ ≤ 1. It follows that

‖T‖ ≥ |bm(x)| =
N∑

n=1

|tmn|.

Since N ≥ 1 and m ≥ 1 are arbitrary, we conclude that ‖T‖ ≥ C(T ). Hence ‖T‖ = C(T ).
Let T = (tmn) be a matrix that preserves limits. Then T : `∞c → `∞c is a linear operator

on (`∞c , ‖ · ‖∞). We show that
∞∑
n=1

|tmn| <∞

for every m ≥ 1. Suppose that this is false for some m ≥ 1. Then there exists a strictly
increasing sequence {nk}∞k=1 of positive integers such that n1 = 1 and

nk+1−1∑
n=nk

|tmn| ≥ k (3.1)

1It is important to note that not every linear operator on (`∞c , ‖ · ‖∞) has a matrix representation, though
bounded ones do have representing matrices with respect to a Schauder basis for `∞c , say {er}∞r=0, where
e0 := (1, 1, ...) and er = (xn)

∞
n=1 ∈ `∞ with xr = 1 and xn = 0 for all n 6= r when r ≥ 1, so that every

(xr)
∞
r=1 ∈ `∞c with xr → x ∈ C as r →∞ can be (uniquely) written as

(xr)
∞
r=1 = xe0 +

∞∑
r=1

(xr − x)er.
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for all k ≥ 1. Taking (xn)∞n=1 with xn = sgn(tmn)/k for all n ∈ [nk, nk+1) and observing that
xn → 0 as n→∞, we have

bm(x) =
∞∑
k=1

nk+1−1∑
n=nk

|tmn|
k

<∞.

But (3.1) implies that bm(x) =∞, a contradiction.
Now we show that T ∈ B(`∞c ). In view of Theorem 2.1, we need only to prove that for

any {xk}∞k=1 ⊆ `∞c such that xk → x ∈ `∞c and Txk → y ∈ `∞c as k → ∞, we have y = Tx.
Suppose that xkn → ak, xn → a and yn → b as n → ∞. Then ak → a as k → ∞ and
(Tx)m → a as m→∞. Let ε > 0. Since Txk → y as k →∞, there exists K ≥ 1 such that∣∣∣∣∣

∞∑
n=1

tmnx
k
n − ym

∣∣∣∣∣ < ε

for all k ≥ K and all m ≥ 1. Letting m → ∞ we obtain |ak − b| ≤ ε for all k ≥ K. Since
ε > 0 is arbitrary, we see that ak → b as k → ∞. Hence a = b. This implies that for any
ε > 0, there exists M ≥ 1 such that |(Tx)m − ym| < ε for all m > M . Put

CM := max
1≤m≤M

∞∑
n=1

|tmn| <∞.

Since xk → x as k →∞, we have

|(Tx)m − ym| = lim
k→∞

∣∣∣∣∣
∞∑
n=1

tmn(xn − xkn)

∣∣∣∣∣ ≤ CM · lim
k→∞
‖x− xk‖∞ = 0

for all 1 ≤ m ≤M . Hence ‖Tx− y‖∞ ≤ ε. We conclude that y = Tx.
In general, we may define regular operators on `∞c . Denote by `∞0 the closed subspace of

`∞c consisting of all the sequences (xn)∞n=1 such that xn → 0 as n→∞. For each z ∈ C, let

`∞0 + z := {(xn + z)∞n=1 : (xn)∞n=1 ∈ `∞0 } ⊆ `∞c .

Then `∞c is the disjoint union of `∞0 +z over z ∈ C. We say that T ∈ L(`∞c ) is weakly regular if
T ∈ B(`∞c ) and T (er) ∈ `∞0 for all r ≥ 1. Clearly, if T is weakly regular, then T |`∞0 ∈ B(`∞0 ),
since {er}∞r=1 is a Schauder basis for `∞0 . However, the converse may not hold. We say that
T is regular if T is weakly regular such that T (e0) ∈ `∞0 + 1. On the other hand, we say that
T ∈ L(`∞c ) preserves limits if T |`∞0 ∈ B(`∞0 ) and T (`∞0 + z) ⊆ `∞0 + z for all z ∈ C. Then one
can show that T ∈ L(`∞c ) is regular if and only if T preserves limits.
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